

FOSS and Software Engineering

Tony Wasserman
Carnegie Mellon Silicon Valley

FOSS 2010 Workshop, UC Irvine
February, 2010

What is “Software Engineering”?

• A process by which an individual or team

organizes and manages the creation of a

software-intensive system, from concept

through one or more formal releases

40 Years of Software Engineering R&D

• Good understanding of the basic principles of software design and
development
– Abstraction
– Modularity and openness
– Coupling and dependencies
– Internationalization and localization

• Tremendous increase in complexity of systems that we are able to
design and build
– “Standard” architectures and frameworks
– Extensive component and subsystem libraries
– Powerful open source tools

FOSS and software engineering

• Vast number of free and open source tools to support

software engineering processes

• Wide variety of software engineering practices in FOSS

development

• Comparing quality of FOSS software vs. SaaS and

proprietary software

FOSS development tools

• Have completely transformed the market for software
development tools
– Effectively driven tools cost to zero

• Are widely used by developers of both proprietary and
open source software projects

• Are available for a broad range of platforms:
Windows, Mac, Linux

• Are available for almost every aspect of the software
development process

Sampling of FOSS development tools

• IDEs: Eclipse, NetBeans, RadRails
• Requirements Mgmt: OSRMT
• Visual modeling: ArgoUML, OpenAMEOS
• Issue tracking: Bugzilla, Trac, Mantis
• Version control: Subversion, CVS
• Build tool: Ant
• Code repositories: SourceForge, GForge, Tigris
• Java Unit Testing: Junit
• Test Management: TestLink
• Scripting languages: Perl, Python, PHP, Ruby
• Web GUI builders and toolkits: YUI, GWT, Qt Creator, Dojo/Wavemaker
• Project and process management: Redmine, OpenProj, IceScrum

FOSS Tools build on FOSS components
Example: IceScrum

• Java EE application
• Five layer architecture
• FOSS components

– ICEfaces Ajax library
– Spring
– Hibernate
– Tomcat
– MySQL
– Ant
– JUnit

“Instant” FOSS application development

• Prebuilt open source stacks for
– Content management systems: Drupal, Joomla, Alfresco, Plone
– Customer relationship management: SugarCRM
– Wikis: DocuWiki, MediaWiki
– Project management: Redmine

• No new code means no new bugs

FOSS and software engineering

• Vast number of free and open source tools to support

software engineering processes

• Wide variety of software engineering practices in FOSS

development

• Comparing quality of FOSS software vs. SaaS and

proprietary software

Huge variety of FOSS projects

• Mirrors variety of proprietary project teams
– Individual contributors
– Small co-located teams
– Small distributed teams
– Large distributed teams
– Commercial teams

• Community, foundation, and commercial open source
– Membership
– Project cohesion
– Management and governance

Differences among FOSS projects

• Leadership, management, and governance
• Project size (people, code base)
• Project team (experience, technical background)
• Technology base (platforms, languages)
• Individual reasons and goals for participation
• Geographical separation
• Cultural differences
• Commercial pressures (release schedules, roadmaps)

These differences strongly affect SE processes.

Four examples

• Tiny community project
– Unfunded project with 1-2 junior people, no schedule, no plans for

wide use by others

• Large community project
– Unfunded project with core leadership team, numerous volunteers, no

business model

• Large foundation-based project
– Managed project with core team, many volunteers, overall

governance, and large audience for testing and use

• Commercial open source project
– Managed and controlled contributions, roadmap, business plan

Project Characteristics (1)

• Commercial open source projects behave similarly to commercial
proprietary projects
– Employees and paid contractors write all core code
– Management hierarchy for project management, staffing, etc.
– Business and marketing decisions influence features, user interfaces,

and release dates
– Controlled releases, not nightly builds
– Community participates in testing
– End users expect high quality software
– Commercial customers will pay for support and professional services

Project Characteristics (2)

• Large foundation-based open source projects
– Foundation leadership approves project and influences releases
– Core project management team oversees committers and screens

contributions from volunteers
– Many contributors paid by their employers to work on project
– Open discussions through IRC channels, Wikis, or similar mechanisms
– High degree of transparency and participation
– Community participates in testing
– No direct commercial support

Project Characteristics (3)

• Community-based open source projects
– Little or no formal governance except for commitment rules
– Lower cohesion with higher contributor turnover
– Few schedules: “It's done when it's done”
– High degree of transparency and participation
– Volunteers may not have appropriate technical skills
– No built-in audience for project; hard to build a “community”
– No commercial support

FOSS and software engineering

• Vast number of free and open source tools to support

software engineering processes

• Wide variety of software engineering practices in FOSS

development

• Comparing quality of FOSS software vs. SaaS and

proprietary software

Coverity Scan project on open source quality
http://scan.coverity.com

http://www.coverity.com/library/pdf/open_source_quality_report.pdf

Qualipso Project (qualipso.org)

• Competence Centers
• Business Models
• Next Generation Forge
• Trustworthy results and process
• Information management
• Interoperability
• Legal Issues

Qualipso results on trustworthiness

• Studied 96 projects against 11 dimensions, including
– Repository
– Standalone vs. part of larger project
– Application type
– Developer organization
– Size of project team
– User community size
– Programming language
– Tool support

• Report available at http://www.qualipso.org/node/84

Some key SE research questions

• Is open source software of “higher quality” than traditional
commercial software?

• Is open source software more secure than traditional commercial
software?

• Is the community-based open source development model more
effective than other approaches to software development?
(Cathedral vs. the Bazaar)

• What are the most effective approaches to open source leadership
and project governance?

Tony's Hypotheses

• The more polished the release, the more it costs to build
– Scalability, user interface, installation, documentation

• No significant differences in quality between FOSS and
commercial software created by professional software
developers

• No significant differences in processes between commercial
open source and other commercial software

• The larger the company, the more likely it is to use
commercial software development tools

Contact information

Anthony I. (Tony) Wasserman

post: Carnegie Mellon SV
Moffett Field, CA 94035 USA

tel: +1.415.641.1180 (ofc)
+1.415.612.0600 (m)

email: tonyw@sv.cmu.edu
Skype: tony.wasserman
Twitter: twasserman
Googletalk: tony.wasserman

